
Improving the robustness of language models
– UIUC TREC-2003 Robust and Genomics Experiments

ChengXiang Zhai, Tao Tao, Hui Fang, Zhidi Shang
Department of Computer Science

University of Illinois at Urbana-Champaign

Abstract

In this paper, we report our experiments in the TREC 2003
Genomics Track and the Robust Track. A common theme
that we explored is the robustness of a basic language
modeling retrieval approach. We examine several aspects
of robustness, including robustness in handling different
types of queries, different types of documents, and op-
timizing performance for difficult topics. Our basic re-
trieval method is the KL-divergence retrieval model with
the two-stage smoothing method plus a mixture model
feedback method. In the Genomics IR track, we propose
a new method for modeling semi-structured queries using
language models, which is shown to be more robust and
effective than the regular query model in handling gene
queries. In the Robust track, we experimented with two
heuristic approaches to improve the robustness in using
language models for pseudo feedback.

1 Introduction

Recent work on using language models for information
retrieval has shown that probabilistic language models
have several advantages over the more traditional retrieval
models, including being able to optimize retrieval param-
eters automatically [7] and improve retrieval performance
through better language models or estimation methods
[5, 2]. Language models have also shown promising em-
pirical results in different TREC tasks (e.g., [3]). In this
year’s TREC experiments, we focus on the issue of the ro-
bustness of language modeling approaches, and examine
several aspects of it, including robustness in handling dif-
ferent types of queries, different types of documents, and
optimizing performance for difficult topics.

Our basic retrieval method is the KL-divergence re-
trieval model with the two-stage smoothing method plus
a mixture model feedback method [5, 7]. The KL-
divergence retrieval model can be regarded as a gener-
alization of the query likelihood method. It has an ad-
ditional advantage of supporting model-based feedback
[5]. The two-stage smoothing was originally proposed in
the context of query likelihood, but we can adapt it in a
straightforward way to handle a query model generated

by a feedback method. We test this basic approach in the
Genomics IR track to see how robust such an approach is
in handling the Medline abstract documents and the gene
description queries. In the Genomics IR track, we propose
a new method for modeling semi-structured queries using
language models, which is shown to be more robust and
effective than the regular query model in handling gene
queries. In the Robust Track, we explore how we can au-
tomatically set parameters and evaluate how well our ap-
proach perform on difficult topics. In the Robust track, we
experimented with two heuristic approaches to improve
the robustness in using language models for pseudo feed-
back.

2 Retrieval with language models

In this section, we describe our retrieval approaches. The
basic retrieval formula we use is the Kullback-Leibler
(KL) divergence between the query language model and
the document language model [1, 5]. This method is a
generalization of the query likelihood retrieval method
proposed in [4] and can support feedback more naturally
than the query likelihood method.

Suppose that a query q is “generated” by a unigram
language model p(q | θQ) with θQ denoting the parame-
ters, and similarly, a document d is generated by a uni-
gram model p(d | θD) with θD denoting the parameters.
Let θ̂Q and θ̂D be the estimated query and document lan-
guage models respectively. The KL-divergence retrieval
formula scores d with respect to q with the following neg-
ative KL-divergence function [5]:

−D(θ̂Q || θ̂D) =
∑

w

p(w | θ̂Q) log p(w | θ̂D)

+(−
∑

w

p(w|θ̂Q)logp(w|θ̂Q))

Since the second term on the right-hand side of the
formula does not depend on d, it can be ignored for the
purpose of ranking documents. Thus the scoring is es-
sentially based on the first term, i.e., the cross entropy of
the document model and the query model. In general, the

1

computation of this cross entropy involves a sum over all
the words that have a non-zero probability according to
p(w|θ̂Q). However, when θ̂D is based on the following
general smoothing scheme, the computation would only
involve a sum over those that both have a non-zero prob-
ability according to p(w|θ̂Q) and occur in document d.
Such a sum can be computed much more efficiently with
an inverted index. See [3] for a detailed explanation of
this.

Clearly, the retrieval performance of the KL-divergence
would depend on how we estimate the document model
θD and the query model θQ. Smoothing of θD is very
important, and an effective smoothing method is the
two-stage smoothing method proposed in [7], where it
has been shown to achieve optimal or near optimal per-
formance with completely automatic parameter setting.
However, this smoothing method as presented in [7] is
based on the query likelihood retrieval method, which is
unable to incorporate feedback naturally. Although some
techniques for tuning retrieval parameters automatically
are proposed in [7], they are based on without pseudo
feedback. This is also why the performance reported
in [7] is not as good as the best official TREC results
on the same data, which are usually obtained based on
pseudo feedback. The KL-divergence retrieval formula
can be shown to be a generalization of the query like-
lihood method, and can naturally support feedback as
query model updating. Two specific methods for per-
forming feedback using language models are proposed in
[5]. In order to automatically tune the retrieval parameters
for pseudo feedback, we extend the two-stage smoothing
method so that it can work with a query model using KL-
divergence. Since maximizing the likelihood is equivalent
to minimizing the KL-divergence, this extension is not un-
natural. We now explain this extension in detail.

The basic idea of two-stage smoothing is to decouple
the two roles of smoothing (i.e., the estimation role and
query modeling role [6]) so that we can capture the in-
trinsic connections between the parameter values and the
data. Specifically, the document model θD is smoothed
first with Dirichlet prior (to implement the estimation
role) and then with a simple linear interpolation with some
query background model (to implement the query mod-
eling role). To apply this idea to the KL-divergence re-
trieval formula, we also use Dirichlet prior as the first-
stage smoothing method. That is, our estimated document
language model θD is given by Dirichlet prior [6]. Ac-
cording to this method,

p(w|θ̂D) =
c(w, d) + µp(w|C)

|d| + µ

where c(w, d) is the count of word w in d, µ is a query in-
dependent smoothing parameter, and p(w|C) is reference
language model estimated using the whole document col-
lection. µ can be set using leave-one-out cross validation

on the document collection [7]. To implement the second-
stage smoothing, we first interpolate the estimated docu-
ment model θ̂D with the query background model p(w|U)

to obtain a two-stage smoothed document model θ̂
′

D , and
then compute the KL-divergence D(θ̂Q||θ̂

′

D . That is,

p(w|θ̂
′

D) = (1 − λ)p(w|θ̂D) + λp(w|U)

where λ can be interpreted as the amount of noise that
we believe exists in the query, and p(w|U) is the user’s
query background model. Since no information is avail-
able about the noise in the query, we simply approximate
p(w|U) by p(w|C). λ can also be estimated in a very
much similar way as in [7], except that we minimize the
KL-divergence between the document mixture model and
the query model instead of maximizing the query likeli-
hood given the document mixture model.

The collection language model p(w|C) is typi-
cally estimated by c(w,C)�

w′ c(w′,C) , or a smoothed version
c(w,C)+1

V +
�

w′ c(w′,C) , where V is an estimated vocabulary size
(e.g., the total number of distinct words in the collection).
One advantage of the smoothed version is that it would
never give a zero probability to any term, but in terms of
retrieval performance, there will not be any significant dif-
ference in these two versions, since

∑
w′ c(w′, C) is often

significantly larger than V .
Having discussed how we use two-stage smoothing to

estimate a document model, let us now look at the query
model. The simplest way to estimate θQ is to use the max-
imum likelihood estimator based on the query text, which
gives us essentially the empirical query distribution:

pml(w|θ̂Q) =
c(w,q)

|q|

Using this estimated value, the KL-divergence scoring
formula is essentially the same as the query likelihood
retrieval formula, thus we essentially have the two-stage
smoothing retrieval method as presented in [7]. This is
what we use for the initial round of retrieval. A more
interesting way of computing p(w|θ̂Q) is to exploit feed-
back documents. Specifically, we can interpolate the sim-
ple pml(w|θ̂Q) with a feedback model p(w|θF) estimated
based on feedback documents. That is,

p(w|θ̂Q) = (1 − α)pml(w|θ̂Q) + αp(w|θF) (1)

where, α is a parameter that needs to be set empirically.
To compute θF , we assume a two component mixture

model for the feedback documents, where one component
model is p(w|θF) and the other is p(w|C). The likelihood
of the feedback documents is thus

log p(F | θF) =

2

k∑

i=1

∑

w

c(w; di) log((1 − ν)p(w | θF) + νp(w | C))

where, F = {d1, ..., dk} is the set of feedback documents,
and ν is yet another parameter that indicates the amount of
“background noise” in the feedback documents, and that
needs to be set empirically. Given ν, the feedback docu-
ments F , and the collection language model p(w|C), we
can use the EM algorithm to compute the maximum like-
lihood estimate of θF [5]. For the sake of efficiency, we
truncate the model θF so that we only keep k word with
the highest probabilities according to p(w|θF). We thus
have four parameters to set in performing pseudo feed-
back: (1) α controls the influence of feedback documents
on the new query model; (2) ν indicates the amount of
noise that we believe exists in the feedback documents;
(3) k is the number of terms to select for query model up-
dating; and (4) the number of documents to use for feed-
back. It is reasonable to assume that the choice of k has a
relatively insignificant influence since the words excluded
generally have smaller probabilities. But we know that the
feedback performance is sensitive to both α and ν [5], and
no doubt, also to the number of top documents to be used
for pseudo feedback. This makes the feedback approach
less robust.

Thus a major research question we address is how we
can make this feedback process more robust. We propose
two strategies:

• Weighted pseudo feedback: The basic idea of this
strategy is to discount the contribution of documents
according to their rank in the results. Specifically, we
assume the probability of relevance of a document
ranked at rank r to be 1/r. Thus the top document has
“full” contribution in feedback, whereas the second
and third documents are discounted by a factor of
1/2 and 1/3 respectively. We hoe this strategy would
make the performance less sensitive to the choice of
the number of documents used for pseudo feedback
because if we use more documents, those documents
would just be discounted more.

• Applying two-stage smoothing after feedback:
The idea of this strategy is to re-estimate the second-
stage smoothing parameter λ after we obtain an up-
dated query model using feedback so that we can
“compensate” for any non-optimality in the feedback
parameter setting by adjusting λ according to the
“noise” in the newly updated query model.

Both strategies have shown some positive effect in our
preliminary experiments with the past TREC data.

3 Genomics IR Track

We participated in the primary task of the genomics IR
track, and focused on studying how we may apply lan-

guage modeling approaches to this new retrieval task.
A critical difference between the genomics IR task and

a regular ad hoc task is that a query in the genomics IR
task has a structure. More specifically, a gene query has
several parts, including an official name, which is usually
a long noun phrase, several symbols, each being a unique
identifier for the gene, and protein product names. Such
a query has a clear disjunctive structure in that matching
either a gene symbol or the complete gene name would
indicate relevance. For example, topic 1 has the following
name and symbols:

OFFICIAL_GENE_NAME
activating transcription factor 2
OFFICIAL_SYMBOL ATF2
ALIAS_SYMBOL HB16
ALIAS_SYMBOL CREB2
ALIAS_SYMBOL TREB7
ALIAS_SYMBOL CRE-BP1

These symbols are unique identifiers for the gene, so
matching one of the symbols is a sufficiently strong ev-
idence for a document to be relevant, and is as good as
matching the whole phrase “activating transcription factor
2”. Thus although both “transcription” and “CREB2” are
a single word term, “CREB2” should be weighted much
higher than “transcription”.

Such a semi-structured query clearly violates the basic
assumption made in a language modeling approach that
the query can be treated as a sample drawn from a lan-
guage model. As a result, if we use the basic language
modeling approach as is, the gene symbols may be under-
weighted. Indeed, in our preliminary experiments with
the training topics, we found that the basic language mod-
eling approaches did not perform as well as well-tuned
vector space models.

To address this problem, we propose a new way to es-
timate our query language model θQ so that it can better
model a disjunctive query. Our idea is to first compute the
empirical word distribution for each “component query”,
and then take an average of them. Formally, suppose
q = {q1, ..., qk} is a disjunctive semi-structured query,
where qi is a “component query”. Our estimated query
model is given by

p(w|θQ) =
1

k

k∑

i=1

p̃(w|qi)

where p̃(w|qi) is the empirical word distribution of com-
ponent query qi, and is computed as c(w,qi)

|qi|
where

c(w, qi) is the count of word w in the component query
qi and |qi| is the length of qi. Note that each gene symbol
is one component query so if qi is a gene symbol s, then
we have p̃(s|qi) = 1, whereas if w is a word in the name,
then p̃(w|qi) = 1/|qi|, which is usually smaller than 1
because a name phrase almost always has more than one

3

Query No feedback Pseudo feedback
MAP Pr@0.1 Pr@10doc Rec@1000 MAP Pr@0.1 Pr@10doc Rec@1000

Official Name 0.089 0.168 0.086 367/566 0.101 0.176 0.094 389/566
Symbols 0.147 0.289 0.131 390/566 0.169 0.313 0.142 466/559
All words 0.138 0.277 0.116 391/566 0.149 0.278 0.11 424/566

All distinct words 0.160 0.310 0.140 493/566 0.171 0.321 0.134 514/566
Name + Symbols 0.178 0.338 0.152 519/566 0.193 0.366 0.158 524/566

(ad hoc weighting)
Name + Symbols 0.185 0.385 0.154 496/566 0.200 0.393 0.150 511/566

(model avg.)

Table 1: Different query models with/without pseudo feedback. Boldface indicates the results of two official submis-
sions.

word. Thus, in effect, our average query model would
favor matching a symbol. Intuitively, this average query
model normalizes word counts so that the total contribu-
tion from each component query is equal, reflecting the
disjunctive semantics of the query. As a baseline method,
we also experimented with heuristically duplicating each
gene symbol in a query to “boost” its weight.

Our two official submissions represent these two dif-
ferent approaches to model semi-structured queries. In
both official submissions, we used symbols and the offi-
cial name in the gene query description, and used the re-
trieval approach as described in Section 2 except that we
did not apply two-stage smoothing after pseudo feedback.
We used top 10 documents for pseudo feedback, set both
α and ν to 0.5, and used top 20 terms for query model
updating.

Since many biology names involve digits and hyphens,
we used a slightly different tokenization method than what
we normally use to handle the special syntax of gene
names. Specifically, we retain all the digits as well as any
hyphen that connects at least one digit; in other words,
we only remove a hyphen when it connects two letters.
This method gives a slight improvement in performance
based on the training topics. To test the robustness of our
method, we deliberately did not remove any stop word,
as we believe that this is best handled through appropriate
language modeling. We did not apply stemming either.

Table 3 shows the results of our two official submis-
sions along with some other experiments where we use
different types of queries and test them with/without feed-
back. The results of the two official runs are highlighted
in boldface.

We can make the following observations:

1. Using gene name alone is least effective, signifi-
cantly worse than using any other versions of the
query. This is probably because the words in a name
are too general and thus not discriminative. Indexing
the whole name as a phrase may help improve the
performance.

2. Using symbols is more effective than using all the

words, which means that we treat the whole gene de-
scription as one long text query. This suggests that
the symbols alone are the most important informa-
tion in the query, and there are noise terms in other
part of the query (mostly the gene name and protein
names).

3. Using all words but ignoring word frequency (i.e.,
“All distinct words” in the table) improves perfor-
mance significantly. Since symbols always have a
frequency of 1, this suggests that when pooling all
words together, we are overweighting the regular
words in those names. The fact that “all distinct
words” also performs significantly better than using
the symbols alone indicates that the gene name is
also very useful.

4. The two official runs all use names combined with
symbols and both put more weight on a symbol term.
We see that both perform better than other runs, in-
dicating that treating such a disjunctive query as a
regular text query is non-optimal and we need to in-
crease the weight for short component queries (i.e,.
symbols).

5. Comparing the two different methods for modeling
disjunctive queries (i.e., ad hoc weighting by dupli-
cation and language model averaging), we see that
the average query model approach performs slightly
better in mean average precision (MAP) and much
better in precision at recall level of 0.1 (i.e., the front
end precision). However, it has a lower recall at
1,000 documents and a lower precision at 10 doc-
uments in feedback runs (i.e., our official runs).

4 Robust Track

Our goal for the robust track is to evaluate and improve the
robustness of the language model based retrieval approach
described in Section 2. This approach is a combination of
the two-stage smoothing method which has been shown to

4

Topics Query Type MAP Pr@0.1 Pr@10doc Rec@1000 percent(pr@10=0) MAP area
(worst 12 topics)

title 0.108 0.275 0.268 2034/4416 18% 0.0057
Old description 0.113 0.293 0.266 1827/4416 26% 0.0031

title+desc 0.140 0.380 0.326 2178/4416 12% 0.0080
title 0.303 0.608 0.430 1392/1658 6.0% 0.024

New description 0.372 0.684 0.494 1404/1658 12% 0.0207
title+desc 0.392 0.741 0.528 1476/1658 10% 0.0466

Table 2: Different types of queries on old and new topics.

Topics Method MAP Pr@0.1 Pr@10doc Rec@1000 percent MAP area
(pr@10=0) (worst 12 topics)

no re-est (20 terms) 0.113 0.293 0.266 1827/4416 26% 0.0031
Old 2s re-est (20 terms) 0.1178 0.311 0.280 1892/4416 24% 0.0036

2s re-est (50 terms) 0.1250 0.326 0.282 1933/4416 26% 0.0034
no re-est (20 terms) 0.372 0.684 0.494 1404/1658 12% 0.0207

New 2s re-est (20 terms) 0.364 0.680 0.486 1402/1658 16% 0.0193
2s re-est (50 terms) 0.375 0.675 0.498 1409/1658 16% 0.0189

Table 3: Effect of two-stage smoothing after feedback on old and new topics.

be quite robust w.r.t., parameter setting [7], and the mix-
ture model feedback approach [5], which is effective but
sensitive to several parameters.

As discussed in Section 2, we propose two strategies
to reduce the sensitivity of our approach to the setting
of parameters: (1) Estimate the probability of relevance
for each document to be used for pseudo feedback so as
to discount the contribution of documents based on their
ranks. (2) Apply the two-stage smoothing method to re-
estimate the smoothing parameters after query model up-
dating. In some sense, this method is to ”bypass” the
problem of choosing optimal values for the some of the
feedback parameters. In our preliminary experiments with
the old topics, these methods perform better than several
baseline approaches

We did minimum preprocessing (only stemming, no
stop word removal) to test the robustness of our method,
and submitted five runs with one run using title of the
query (UIUC03Rt1, three runs using the description part
of the query (UIUC03Rd1, UIUC03Rd2, UIUC03Rd3),
and one run using both the title and the description
(UIUC03Rtd1). In all our submissions we applied the first
strategy (i.e., discounting documents based on ranks), and
in UIUC03Rd2 and UIUC03Rd3, we also applied the sec-
ond strategy. UIUC03Rd2 and UIUC03Rd3 differ in the
number of top terms selected to update the query model
(20 and 50 respectively). In all cases, we used top 10 doc-
uments for pseudo feedback, and set α and ν both to 0.5
as in all our experiments.

In Table 4, we compare the performance of different
versions of the queries on both old topics and new top-

ics. It is clear that, in all cases, using the regular precision
measures over all the topics, “title+description” performs
much better than “description only”, which performs bet-
ter than “title only”, though in the case of old topics, the
recall of “description only” is worse than that of “title
only”. However, it is very interesting to see that for both
old and new topics, “title only” has the least number of
topics with no relevant document in top 10 documents,
and its MAP area for the worst 12 topics is also better
than the description. “title+description” has the largest
MAP area for the worst 12 topics, but, compared with the
“title only” run, it actually has more topics which have
no relevant document in top 10 documents. These results
clearly show that using titles appear to help improve the
performance on difficult topics. This may be because the
words in the query title are more accurate and when we
use more words from other parts they just bring up many
non-relevant documents perhaps because the relevant doc-
uments do not have a good match in vocabulary with the
words in these other parts. Another possibility is that our
approach may not be discriminative enough to give title
words more weight and due to the fact that we do not re-
move stop words, the description part just adds too many
noisy words. It would thus be interesting to apply our
disjunctive query model to model the title and description
parts to see if it can improve the performance, which we
will explore in the future.

In Table 4, we compare the three “description only”
runs. One (baseline) run applies two-stage smoothing
only for the initial run and after the feedback the same
smoothing parameters are used. The other two runs fur-

5

ther apply two-stage smoothing to re-estimate the smooth-
ing parameters after we obtain an updated query model.
These two runs differ in the number of top terms to be se-
lected for query model updating. Here we can make the
following observations:

1. Looking at all runs in which we use 20 terms for
feedback, we see that for old topics, the re-estimation
strategy helps improve performance by all the regu-
lar measures averaged on all the topics, but it does
not improve the performance on difficult topics. In-
deed, it actually hurts the performance for difficult
topics. For new topics, the re-estimation strategy not
only hurts the performance for difficult topics, it is
worse by all measures.

2. Comparing all the runs involving re-estimation, we
see that for old topics, using 50 terms for feedback
is better than using 20 terms when averaging over
all the topics, but is worse on difficult topics. For
new topics, it appears to perform similarly to using
20 terms.

Thus our re-estimation strategy does not seem to help
improve the robustness. We have not yet had more exper-
iments to examine whether the first strategy – discounting
feedback documents based on their ranks – is useful.

5 Conclusions

In this paper, we report our experiments in the TREC 2003
Genomics Track and the Robust Track. A common theme
that we explored is the robustness of a basic language
modeling retrieval approach. We examine several aspects
of robustness, including robustness in handling different
types of queries, different types of documents, and op-
timizing performance for difficult topics. Our basic re-
trieval method is the KL-divergence retrieval model with
the two-stage smoothing method plus a mixture model
feedback method. In the Genomics IR track, we propose
a new method for modeling semi-structured queries using
language models, which is shown to be more robust and
effective than the regular query model in handling gene
queries. In the Robust track, we experimented with two
heuristic approaches to improve the robustness in using
language models for pseudo feedback. One is the dis-
count feedback documents based on their ranks and the
other is to apply two-stage smoothing after feedback to
re-estimate the smoothing parameters. Preliminary re-
sult analysis appears to suggest that the re-estimation of
smoothing parameters does not really help. But we need
to do more experiments and analysis in order to make re-
liable conclusions.

References

[1] J. Lafferty and C. Zhai. Document language models,
query models, and risk minimization for information
retrieval. In Proceedings of SIGIR’01, pages 111–
119, Sept 2001.

[2] V. Lavrenko and B. Croft. Relevance-based language
models. In Proceedings of SIGIR’01, pages 120–127,
Sept 2001.

[3] P. Ogilvie and J. Callan. Experiments using the lemur
toolkit. In Proceedings of the 2001 TREC conference,
2002.

[4] J. Ponte and W. B. Croft. A language modeling ap-
proach to information retrieval. In Proceedings of the
ACM SIGIR’98, pages 275–281, 1998.

[5] C. Zhai and J. Lafferty. Model-based feedback in the
KL-divergence retrieval model. In Tenth International
Conference on Information and Knowledge Manage-
ment (CIKM 2001), pages 403–410, 2001.

[6] C. Zhai and J. Lafferty. A study of smoothing meth-
ods for language models applied to ad hoc informa-
tion retrieval. In Proceedings of ACM SIGIR’01,
pages 334–342, Sept 2001.

[7] C. Zhai and J. Lafferty. Two-stage language models
for information retrieval. In Proceedings of ACM SI-
GIR’02, pages 49–56, Aug 2002.

6

